资源类型

期刊论文 58

年份

2023 12

2022 3

2021 6

2020 2

2019 3

2018 4

2016 5

2015 3

2014 3

2013 1

2012 1

2010 2

2009 1

2008 6

2007 3

2000 1

展开 ︾

关键词

CD44 1

N3C空位 1

信息-知识-智能的统一理论 1

催化剂活化 1

光催化 1

原位谱学 1

外泌体 1

多模态鉴定 1

宣肺败毒方 1

巨噬细胞活化 1

巨噬细胞迁移 1

氮化碳 1

炎症 1

甲烷化 1

知识 1

知识激活 1

知识生成 1

知识量 1

细胞间交流 1

展开 ︾

检索范围:

排序: 展示方式:

Integration of microbial reductive dehalogenation with persulfate activation and oxidation (Bio-RD-PAO

《环境科学与工程前沿(英文)》 2022年 第16卷 第2期 doi: 10.1007/s11783-021-1457-8

摘要:

•Bio-RD-PAO can effectively and extensively remove organohalides.

关键词: Bio-RD-PAO     Microbial reductive dehalogenation     Persulfate     Organohalide respiration     Complete attenuation    

Enhanced activation of persulfate using mesoporous silica spheres augmented Cu–Al bimetallic oxide particles

《化学科学与工程前沿(英文)》 2023年 第17卷 第10期   页码 1581-1592 doi: 10.1007/s11705-023-2327-7

摘要: Herein, Cu–Al bimetallic oxide was synthesized and mixed with mesoporous silica spheres via a simple hydrothermal method. The prepared sample was then analyzed and employed to activate potassium peroxydisulfate for bisphenol A removal. Based on the results of X-ray diffraction, scanning electron microscopy, and energy dispersion spectroscopy, Cu–Al bimetallic oxide was determined as CuO-Al2O3, and mesoporous silica spheres were found around the these particles. At 30 min, a bisphenol A degradation level of 90% was achieved, and it remained at over 60% after five consecutive cycles, indicating the catalyst’s superior capacity and stability. In terms of removal performance, the radical pathway (including SO4•‒, OH •, and O2•‒) and singlet oxygen (1O2) played minor roles, while electron migration between bisphenol A, potassium peroxydisulfate, and the catalyst played a dominant role. The introduction of Al2O3 promoted the formation of surface oxygen vacancies, which improved ligand complex formation between potassium peroxydisulfate and the catalyst, thereby facilitating electron migration. Furthermore, mesoporous silica spheres augment not only enhanced bisphenol A adsorption but also alleviated Cu leaching. Overall, this work is expected to provide significant support for the rational development of catalysts with high catalytic activity for persulfate activation via surface electron migration.

关键词: Cu–Al bimetallic oxides     mesoporous silica spheres     peroxydisulfate     bisphenol A    

Degradation of carbon tetrachloride in thermally activated persulfate system in the presence of formic

Minhui XU,Xiaogang GU,Shuguang LU,Zhouwei MIAO,Xueke ZANG,Xiaoliang WU,Zhaofu QIU,Qian SUI

《环境科学与工程前沿(英文)》 2016年 第10卷 第3期   页码 438-446 doi: 10.1007/s11783-015-0798-6

摘要: The thermally activated persulfate (PS) degradation of carbon tetrachloride (CT) in the presence of formic acid (FA) was investigated. The results indicated that CT degradation followed a zero order kinetic model, and was responsible for the degradation of CT confirmed by radical scavenger tests. CT degradation rate increased with increasing PS or FA dosage, and the initial CT had no effect on CT degradation rate. However, the initial solution pH had effect on the degradation of CT, and the best CT degradation occurred at initial pH 6. Cl had a negative effect on CT degradation, and high concentration of Cl displayed much strong inhibition. Ten mmol·L promoted CT degradation, while 100 mmol·L inhibited the degradation of CT, but promoted CT degradation in the presence of FA. The measured Cl concentration released into solution along with CT degradation was 75.8% of the total theoretical dechlorination yield, but no chlorinated intermediates were detected. The split of C-Cl was proposed as the possible reaction pathways in CT degradation. In conclusion, this study strongly demonstrated that the thermally activated PS system in the presence of FA is a promising technique in in situ chemical oxidation (ISCO) remediation for CT contaminated site.

关键词: persulfate     carbon tetrachloride     thermal activation     formic acid     carbon dioxide radical anion    

Removal of nitric oxide from simulated flue gas using aqueous persulfate with activation of ferrous ethylenediaminetetraacetate

《化学科学与工程前沿(英文)》 2023年 第17卷 第4期   页码 460-469 doi: 10.1007/s11705-022-2224-5

摘要: Nitric oxide being a major gas pollutant has attracted much attention and various technologies have been developed to reduce NO emission to preserve the environment. Advanced persulfate oxidation technology is a workable and effective choice for wet flue gas denitrification due to its high efficiency and green advantages. However, NO absorption rate is limited and affected by mass transfer limitation of NO and aqueous persulfate in traditional reactors. In this study, a rotating packed bed (RPB) was employed as a gas–liquid absorption device to elevate the NO removal efficiency (ηNO) by aqueous persulfate ((NH4)2S2O8) activated by ferrous ethylenediaminetetraacetate (Fe2+-EDTA). The experimental results regarding the NO absorption were obtained by investigating the effect of various operating parameters on the removal efficiency of NO in RPB. Increasing the concentration of (NH4)2S2O8 and liquid–gas ratio could promoted the oxidation and absorption of NO while the ηNO decreased with the increase of the gas flow and NO concentration. In addition, improving the high gravity factor increased the ηNO and the total volumetric mass transfer coefficient (KGα) which raise the ηNO up to more than 75% under the investigated system. These observations proved that the RPB can enhance the gas–liquid mass transfer process in NO absorption. The correlation formula between KGα and the influencing factors was determined by regression calculation, which is used to guide the industrial scale-up application of the system in NO removal. The presence of O2 also had a negative effect on the NO removal process and through electron spin resonance spectrometer detection and product analysis, it was revealed that Fe2+-EDTA activated (NH4)2S2O8 to produce •SO4, •OH and •O2, played a leading role in the oxidation of NO, to produce NO3 as the final product. The obtained results demonstrated a good applicable potential of RPB/PS/Fe2+-EDTA in the removal of NO from flue gases.

关键词: rotating packed bed     Fe2+-EDTA     sulfate radical     hydroxyl radical     NO removal efficiency    

Efficient photodegradation of phenol assisted by persulfate under visible light irradiation via a nitrogen-doped

Yan Cui, Zequan Zeng, Jianfeng Zheng, Zhanggen Huang, Jieyang Yang

《化学科学与工程前沿(英文)》 2021年 第15卷 第5期   页码 1125-1133 doi: 10.1007/s11705-020-2012-z

摘要: To realize the utilization of visible light and improve the photocatalytic efficiency of organic pollutant degradation in wastewater, a nitrogen-doped titanium-carbon composite (N-TiO /AC) prepared by sol-gel methods was applied in the photodegradation of phenol assisted by persulfate under visible light irradiation (named N-TiO /AC/PS/VIS). The results show that a synergistic effect exists between visible-light photocatalysis and persulfate activation. Compared with TiO /PS/VIS, the phenol degradation rate was found to be observably improved by 65% in the N-TiO /AC/PS/VIS system. This significant increase in degradation rate was mainly attributed to the following two factors: 1) The N and C doping can change the crystal structure of TiO , which extends the TiO absorption wavelength range to the visible light region. 2) As an electron acceptor, PS can not only prevent electrons and holes from recombining with each other but can also generate strong oxidizing radicals such as ∙SO and ∙OH to accelerate the reaction dynamics. The process of phenol degradation was found to be consistent with the Langmuir pseudo-first-order kinetic model with an apparent rate constant of 1.73 min . The N-TiO /AC/PS/VIS process was proven to be a facile method for pollutant degradation with high pH adaptability, excellent visible-light utilization and good application prospects.

关键词: N-TiO2/AC     visible light     photocatalysis     persulfate activation     phenol    

Preparation of nZVI embedded modified mesoporous carbon for catalytic persulfate to degradation of reactive

《环境科学与工程前沿(英文)》 2021年 第15卷 第5期 doi: 10.1007/s11783-020-1372-4

摘要:

• The MCNZVI is prepared as an interesting material for PS activation.

关键词: MCNZVI     Core-shell structure     Reactive Black 5     Persulfate     Mechanism    

Comparison of exogenous degrader-enhanced bioremediation with low-dose persulfate oxidation for polycyclic

《环境科学与工程前沿(英文)》 2023年 第17卷 第11期 doi: 10.1007/s11783-023-1733-x

摘要: Polycyclic aromatic hydrocarbon (PAH)-contaminated soils are usually complex and characterized by a lack of nutrition and soil salinization, resulting in difficulties in soil remediation. In this study, bioaugmentation with a PAH-degrading Bacillus PheN7 (BA) and low-dose persulfate oxidation (PS), along with natural biodegradation, were utilized to remediate alkaline PAH-contaminated soil. The soil used in the study had a pH of 9.35, and the total PAH content was 568.8 ± 31.0 mg/kg dry soil. After 42 d of remediation, the degradation efficiency of PAHs was 96.72% and 93.88% using persulfate oxidation and bioaugmentation, respectively, whereas 38.66% of PAHs were degraded in natural attenuation (NA). Bacillus was the dominant genera throughout the process of bioremediation with the relative abundance of 79.3% on day 42 in the BA system, whereas, Alcanivorax was enriched and became the dominant genera in PS systems. In the meantime, PAH degradation genes were detected with remarkably higher level in the BA system than in PS system during the remediation. In addition to the degradation of contaminants, persulfate oxidation promotes microbial bioremediation efficiency mainly by lowering the pH to neutral and increasing the active phosphorus content in the soil. Microbial species and ecological niches were less reduced in the PS system than in the BA system. Collectively, persulfate oxidation had a better impact on the soil microbiome and is more suitable for long-term soil health than bioaugmentation through PheN7 addition.

关键词: Bioaugmentation     Low-dose persulfate oxidation     Polycyclic aromatic hydrocarbon     Remediation    

Decomposition of perfluorooctanoic acid by microwave-activated persulfate: Effects of temperature, pH

Yuchi LEE, Shanglien LO, Jeff KUO, Chinghong HSIEH

《环境科学与工程前沿(英文)》 2012年 第6卷 第1期   页码 17-25 doi: 10.1007/s11783-011-0371-x

摘要: Microwave-hydrothermal treatment of persistent and bioaccumulative perfluorooctanoic acid (PFOA) in water with persulfate ( ) has been found effective. However, applications of this process to effectively remediate PFOA pollution require a better understanding on free-radical scavenging reactions that also take place. The objectives of this study were to investigate the effects of pH (pH= 2.5, 6.6, 8.8, and 10.5), chloride concentrations (0.01–0.15 mol·L ), and temperature (60°C, 90°C, and 130°C) on persulfate oxidation of PFOA under microwave irradiation. Maximum PFOA degradation occurred at pH 2.5, while little or no degradation at pH 10.5. Lowering system pH resulted in an increase in PFOA degradation rate. Both high pH and chloride concentrations would result in more scavenging of sulfate free radicals and slow down PFOA degradation. When chloride concentrations were less than 0.04 mol·L at 90°C and 0.06 mol·L at 60°C, presence of chloride ions had insignificant impacts on PFOA degradation. However, beyond these concentration levels, PFOA degradation rates reduced significantly with an increase in chloride concentrations, especially under the higher temperature.

关键词: microwave     perfluorooctanoic acid     pH     persulfate     chloride ions     perfluorocarboxylic acids    

Enhanced activation of peroxymonosulfate by CNT-TiO

Xuemin Hao, Guanlong Wang, Shuo Chen, Hongtao Yu, Xie Quan

《环境科学与工程前沿(英文)》 2019年 第13卷 第5期 doi: 10.1007/s11783-019-1161-0

摘要: CNT-TiO2 composite is used to activate PMS under UV-light assistance. Superior performance is due to the enhanced electron-transfer ability of CNT. SO4•−, •OH and 1O2 play key roles in the degradation of organic pollutants. In this work, a UV-light assisted peroxymonosulfate (PMS) activation system was constructed with the composite catalyst of multi-walled carbon nanotubes (CNT) - titanium dioxide (TiO2). Under the UV light irradiation, the photoinduced electrons generated from TiO2 could be continuously transferred to CNT for the activation of PMS to improve the catalytic performance of organic pollutant degradation. Meanwhile, the separation of photoinduced electron-hole pairs could enhance the photocatalysis efficiency. The electron spin resonance spectroscopy (EPR) and quenching experiments confirmed the generation of sulfate radical (SO4•−), hydroxyl radical (•OH) and singlet oxygen (1O2) in the UV/PMS/20%CNT-TiO2 system. Almost 100% phenol degradation was observed within 20 min UV-light irradiation. The kinetic reaction rate constant of the UV/PMS/20%CNT-TiO2 system (0.18 min−1) was 23.7 times higher than that of the PMS/Co3O4 system (0.0076 min−1). This higher catalytic performance was ascribed to the introduction of photoinduced electrons, which could enhance the activation of PMS by the transfer of electrons in the UV/PMS/CNT-TiO2 system.

关键词: Peroxymonosulfate activation     Carbon nanotubes     TiO2     Water treatment    

Hierarchical porous carbon derived from one-step self-activation of zinc gluconate for symmetric supercapacitors

《化学科学与工程前沿(英文)》 2023年 第17卷 第4期   页码 387-394 doi: 10.1007/s11705-022-2250-3

摘要: Porous carbons with high specific area surfaces are promising electrode materials for supercapacitors. However, their production usually involves complex, time-consuming, and corrosive processes. Hence, a straightforward and effective strategy is presented for producing highly porous carbons via a self-activation procedure utilizing zinc gluconate as the precursor. The volatile nature of zinc at high temperatures gives the carbons a large specific surface area and an abundance of mesopores, which avoids the use of additional activators and templates. Consequently, the obtained porous carbon electrode delivers a satisfactory specific capacitance and outstanding cycling durability of 90.9% after 50000 cycles at 10 A∙g–1. The symmetric supercapacitors assembled by the optimal electrodes exhibit an acceptable rate capability and a distinguished cycling stability in both aqueous and ionic liquid electrolytes. Accordingly, capacitance retention rates of 77.8% and 85.7% are achieved after 50000 cycles in aqueous alkaline electrolyte and 10000 cycles in ionic liquid electrolyte. Moreover, the symmetric supercapacitors deliver high energy/power densities of 49.8 W∙h∙kg–1/2477.8 W∙kg–1 in the Et4NBF4 electrolyte, outperforming the majority of previously reported porous carbon-based symmetric supercapacitors in ionic liquid electrolytes.

关键词: self-activation     zinc organic salts     abundant mesopores     symmetric supercapacitor     liquid electrolyte    

Enhanced performance of oxygen vacancies on CO adsorption and activation over different phases of ZrO

《能源前沿(英文)》 2023年 第17卷 第4期   页码 545-554 doi: 10.1007/s11708-023-0867-7

摘要: The effect of oxygen vacancies on the adsorption and activation of CO2 on the surface of different phases of ZrO2 is investigated by density functional theory (DFT) calculations. The calculations show that the oxygen vacancies contribute greatly to both the adsorption and activation of CO2. The adsorption energy of CO2 on the c-ZrO2, t-ZrO2 and, m-ZrO2 surfaces is enhanced to 5, 4, and 3 folds with the help of oxygen vacancies, respectively. Moreover, the energy barrier of CO2 dissociation on the defective surfaces of c-ZrO2, t-ZrO2, and m-ZrO2 is reduced to 1/2, 1/4, and 1/5 of the perfect surface with the assistance of oxygen vacancies. Furthermore, the activation of CO2 on the ZrO2 surface where oxygen vacancies are present, and changes from an endothermic reaction to an exothermic reaction. This finding demonstrates that the presence of oxygen vacancies promotes the activation of CO2 both kinetically and thermodynamically. These results could provide guidance for the high-efficient utilization of CO2 at an atomic scale.

关键词: CO2 activation     oxygen vacancies     ZrO2     different phases    

A density functional theory study of methane activation on MgO supported NiM cluster: role of M on C–Hactivation

《化学科学与工程前沿(英文)》 2022年 第16卷 第10期   页码 1485-1492 doi: 10.1007/s11705-022-2169-8

摘要: Methane activation is a pivotal step in the application of natural gas converting into high-value added chemicals via methane steam/dry reforming reactions. Ni element was found to be the most widely used catalyst. In present work, methane activation on MgO supported Ni–M (M = Fe, Co, Cu, Pd, Pt) cluster was explored through detailed density functional theory calculations, compared to pure Ni cluster. CH4 adsorption on Cu promoted Ni cluster requires overcoming an energy of 0.07 eV, indicating that it is slightly endothermic and unfavored to occur, while the adsorption energies of other promoters M (M = Fe, Co, Pd and Pt) are all higher than that of pure Ni cluster. The role of M on the first C–H bond cleavage of CH4 was investigated. Doping elements of the same period in Ni cluster, such as Fe, Co and Cu, for C–H bond activation follows the trend of the decrease of metal atom radius. As a result, Ni–Fe shows the best ability for C–H bond cleavage. In addition, doping the elements of the same family, like Pd and Pt, for CH4 activation is according to the increase of metal atom radius. Consequently, C–H bond activation demands a lower energy barrier on Ni–Pt cluster. To illustrate the adsorptive dissociation behaviors of CH4 at different Ni–M clusters, the Mulliken atomic charge was analyzed. In general, the electron gain of CH4 binding at different Ni–M clusters follows the sequence of Ni–Cu (–0.02 e) < Ni (–0.04 e) < Ni–Pd (–0.08 e) < Ni–Pt (–0.09 e) < Ni–Co (–0.10 e) < Ni–Fe (–0.12 e), and the binding strength between catalysts and CH 4 raises with the CH4 electron gain increasing. This work provides insights into understanding the role of promoter metal M on thermal-catalytic activation of CH4 over Ni/MgO catalysts, and is useful to interpret the reaction at an atomic scale.

关键词: CH4 dissociation     Ni–M     C–H bond activation     charge transfer    

Optimal dynamic emergency reserve activation using spinning, hydro and demand-side reserves

S. Surender REDDY,P. R. BIJWE,A. R. ABHYANKAR

《能源前沿(英文)》 2016年 第10卷 第4期   页码 409-423 doi: 10.1007/s11708-016-0431-9

摘要: This paper proposes an optimal dynamic reserve activation plan after the occurrence of an emergency situation (generator/transmission line outage, load increase or both). An optimal plan is developed to handle the emergency, using the coordinated action of fast and slow reserves, for secure operation with minimum overall cost. It considers the reserves supplied by the conventional thermal generators (spinning reserves), hydro power units and load demands (demand-side reserves). The optimal backing down of costly/fast reserves and bringing up of slow reserves in each sub-interval in an integrated manner is proposed. The proposed reserve activation approaches are solved using the genetic algorithm, and some of the simulation results are also compared using the Matlab optimization toolbox and the general algebraic modeling system (GAMS) software. The simulation studies are performed on the IEEE 30, 57 and 300 bus test systems. These results demonstrate the advantage of the proposed integrated/dynamic reserve activation plan over the conventional/sequential approach.

关键词: demand-side reserves     dynamic reserve activation approach     hydro power units     post contingency     sequential reserve activation approach     spinning reserves    

Tumor-derived exosomes induce initial activation by exosomal CD19 antigen but impair the function of

《医学前沿(英文)》 doi: 10.1007/s11684-023-1010-1

摘要: Tumor-derived exosomes induce initial activation by exosomal CD19 antigen but impair the function of CD19-specific CAR T-cells via TGF-β signaling

关键词: exosomes induce activation     impair function CD19     exosomal CD19 antigen    

Coronary leukocyte activation in relation to progression of coronary artery disease

null

《医学前沿(英文)》 2016年 第10卷 第1期   页码 85-90 doi: 10.1007/s11684-016-0435-1

摘要:

Leukocyte activation has been linked to atherogenesis, but there is little in vivo evidence for its role in the progression of atherosclerosis. We evaluated the predictive value for progression of coronary artery disease (CAD) of leukocyte activation markers in the coronary circulation. Monocyte and neutrophil CD11b, neutrophil CD66b expression and intracellular neutrophil myeloperoxidase (MPO) in the coronary arteries were determined by flow cytometry in patients undergoing coronary angiography. The primary outcome included fatal and nonfatal myocardial infarction or arterial vascular intervention due to unstable angina pectoris. In total 99 subjects who were included, 70 had CAD at inclusion (26 patients had single-vessel disease, 18 patients had two-vessel disease and 26 patients had three-vessel disease). The median follow-up duration was 2242 days (interquartile range: 2142–2358). During follow-up, 13 patients (13%) developed progression of CAD. Monocyte CD11b, neutrophil CD11b and CD66b expression and intracellular MPO measured in blood obtained from the coronary arteries were not associated with the progression of CAD. These data indicate that coronary monocyte CD11b, neutrophil CD11b and CD66b expression and intracellular MPO do not predict the risk of progression of CAD.

关键词: coronary artery disease     inflammation     integrin     myeloperoxidase     leukocyte activation    

标题 作者 时间 类型 操作

Integration of microbial reductive dehalogenation with persulfate activation and oxidation (Bio-RD-PAO

期刊论文

Enhanced activation of persulfate using mesoporous silica spheres augmented Cu–Al bimetallic oxide particles

期刊论文

Degradation of carbon tetrachloride in thermally activated persulfate system in the presence of formic

Minhui XU,Xiaogang GU,Shuguang LU,Zhouwei MIAO,Xueke ZANG,Xiaoliang WU,Zhaofu QIU,Qian SUI

期刊论文

Removal of nitric oxide from simulated flue gas using aqueous persulfate with activation of ferrous ethylenediaminetetraacetate

期刊论文

Efficient photodegradation of phenol assisted by persulfate under visible light irradiation via a nitrogen-doped

Yan Cui, Zequan Zeng, Jianfeng Zheng, Zhanggen Huang, Jieyang Yang

期刊论文

Preparation of nZVI embedded modified mesoporous carbon for catalytic persulfate to degradation of reactive

期刊论文

Comparison of exogenous degrader-enhanced bioremediation with low-dose persulfate oxidation for polycyclic

期刊论文

Decomposition of perfluorooctanoic acid by microwave-activated persulfate: Effects of temperature, pH

Yuchi LEE, Shanglien LO, Jeff KUO, Chinghong HSIEH

期刊论文

Enhanced activation of peroxymonosulfate by CNT-TiO

Xuemin Hao, Guanlong Wang, Shuo Chen, Hongtao Yu, Xie Quan

期刊论文

Hierarchical porous carbon derived from one-step self-activation of zinc gluconate for symmetric supercapacitors

期刊论文

Enhanced performance of oxygen vacancies on CO adsorption and activation over different phases of ZrO

期刊论文

A density functional theory study of methane activation on MgO supported NiM cluster: role of M on C–Hactivation

期刊论文

Optimal dynamic emergency reserve activation using spinning, hydro and demand-side reserves

S. Surender REDDY,P. R. BIJWE,A. R. ABHYANKAR

期刊论文

Tumor-derived exosomes induce initial activation by exosomal CD19 antigen but impair the function of

期刊论文

Coronary leukocyte activation in relation to progression of coronary artery disease

null

期刊论文